Parameter Range Reduction for ODE Models Using Cumulative Backward Differentiation Formulas
نویسنده
چکیده
We consider fitting an ODE model to time series data of the system variables. We assume that the parameters of the model have some initial range of possible values and the goal is to reduce these ranges to produce a smaller parameter region from which to start a global nonlinear optimization algorithm. We introduce the class of cumulative backward differentiation formulas (CBDFs) and show that they inherit the accuracy and stability properties of their generating backward differentiation formulas (BDFs). Discretizing the system with these CBDFs and applying consistency conditions results in reductions of the parameter ranges. We show that these reductions are better than can be obtained simply using BDFs. In addition CBDFs inherit any monotonicity properties with respect to the parameters that the vector field possesses, and we exploit these properties to make the consistency checking more efficient. We illustrate with several examples, analyze some of the behaviour of our range reduction method, and discuss how the method could be extended and improved.
منابع مشابه
Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas
In this paper we investigate the behavior of numerical ODE methods for the solution of systems of differential equations coupled with algebraic constraints. Systems of this form arise frequently in the modelling of problems from physics and engineering; we study some particular examples from electrical networks, fluid dynamics and constrained mechanical systems. We show that backward differenti...
متن کاملThe integration of stiff systems of ODEs using multistep methods
The second order Ordinary Differential Equation (ODE) system obtained after semidiscretizing the wavetype Partial Differential Equation (PDE) with the Finite Element Method (FEM), shows strong numerical stiffness. Although it can be integrated using Matlab ode-solvers, the function ode15s offered by Matlab for solving stiff ODE systems does not result very efficient as its resolution requires t...
متن کاملA hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملAn algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases.
The parameter identifiability problem for dynamic system ODE models has been extensively studied. Nevertheless, except for linear ODE models, the question of establishing identifiable combinations of parameters when the model is unidentifiable has not received as much attention and the problem is not fully resolved for nonlinear ODEs. Identifiable combinations are useful, for example, for the r...
متن کاملMethods for Parallel Integration of Stiff Systems of ODEs
This paper presents a class of parallel numerical integration methods for stiff systems of ordinary differential equations which can be partitioned into loosely coupled sub-systems. The formulas are called decoupled backward differentiation formulas, and they are derived from the classical formulas by restricting the implicit part to the diagonal sub-system. With one or several sub-systems allo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013